More tangent planes, and some review

Questions

Problem 1. Last time, I asked you to find the tangent plane to the surface

$$
x y+y z+z x=5
$$

at the point $(1,2,1)$. Do it again, but using the method you learned yesterday in lecture.
Problem 2. Let S be the cone $x^{2}+y^{2}=z^{2}$ and let H be the plane $x-2 y+3 z=13$. The curve of intersection $C=S \cap H$ is an ellipse, and the point $P(4,3,5)$ is on this ellipse.
(a) Find the tangent plane to S at the point P.
(b) The plane from (a) and the plane H intersect in a line. Parametrize this line.
(c) Find the two possible unit tangents \mathbf{T} to the curve C at the point P.
(d) Find the unit normal \mathbf{N} to the curve C at the point P. This one is conceptually tricky. Here are some observations to help you. The curve C is contained in the plane H, so \mathbf{N} must be parallel to this plane. Also, \mathbf{N} is orthogonal to \mathbf{T}, and it points in the direction the curve is "turning."

Below are brief answers to the worksheet exercises. If you would like a more detailed solution, feel free to ask me in person. (Do let me know if you catch any mistakes!)

Answers to questions

Question 1. Letting $F(x, y, z)=x y+y z+z x$, the surface in question is a level set of F. Hence we can use ∇F to find a normal vector at the point $(1,2,1)$. The gradient is

$$
\nabla F(x, y, z)=\langle y+z, x+z, x+y\rangle
$$

and so

$$
\nabla F(1,2,1)=\langle 3,2,3\rangle
$$

will suffice as a normal vector. Hence the plane equation is

$$
3(x-1)+2(y-2)+3(z-1)=0
$$

which is the same equation as last time.

Question 2.

(a) Let $F(x, y, z)=x^{2}+y^{2}-z^{2}$ so that the equation of S is $F(x, y, z)=0$. Then the tangent plane at the point P has normal vector $\nabla F(P)=\langle 8,6,-10\rangle$. We can harmlessly rescale this vector to $\langle 4,3,-5\rangle$ and write the equation

$$
4(x-4)+3(x-3)-5(x-5)=0
$$

(b) We already know that $(4,3,5)$ is on the line, so it suffices to find a direction vector \mathbf{v}. Because this line is contained in the plane $x-2 y+3 z=13$ as well as the plane from the preceding part, it follows that \mathbf{v} ought to be orthogonal to both $\langle 1,-2,3\rangle$ and $\langle 4,3,-5\rangle$. So let's take

$$
\mathbf{v}=\langle 1,-2,3\rangle \times\langle 4,3,-5\rangle=\langle 1,17,11\rangle .
$$

Our line is then given by

$$
\mathbf{r}(t)=\langle 4,3,5\rangle+t\langle 1,17,11\rangle
$$

(c) The two possible unit tangents are

$$
\mathbf{T}= \pm \frac{\mathbf{v}}{\|\mathbf{v}\|}= \pm \frac{\langle 1,17,11\rangle}{\sqrt{411}}
$$

(d) The vector \mathbf{N} is parallel to the plane $x-2 y+3 z=13$ (so, orthogonal to the vector $\langle 1,-2,3\rangle$) and also orthogonal to the vector \mathbf{T} (or the vector \mathbf{v}). So we can start by producing a vector in the correct direction via the cross product:

$$
\langle 1,-2,3\rangle \times\langle 1,17,11\rangle=\langle-73,-8,19\rangle .
$$

Next we rescale to a unit vector:

$$
\frac{\langle-73,-8,19\rangle}{\sqrt{5754}}
$$

This vector is either \mathbf{N} or its negative. To see which one it is, it's necessary to examine the picture: we see that \mathbf{N} should point "inwards" towards the z-axis, as that's the direction the ellipse is turning. Since P has coordinates $(3,4,5)$, the vector above is pointing in roughly the expected direction. So it is correct.

